Effects of yoga with aging

Effects of yoga with aging

Effects of yoga practice on metabolic factors associated with aging

Introduction

We hear of yogis living to a very old age. In his book Autobiography of a Yogi, Yogananda speaks of Trailanga Swami, who was reputed to be over 300 years old, and Shankari Mai Jiew, who was born in 1826, was still alive in 1946. Maharishi Raghuvacharya lived to the age of 115, and Devraha Baba was believed to have lived to over 250 years old. Yogis well known in the west who lived to a very old age include Krishnamacharya (101), Pattabhi Jois (93) and Indra Devi (103).

Not only are master yogis long lived, but they also maintain excellent health e.g. BKS Iyengar is still going strong at 91; he was in better shape at 80 than many people at 40. Photos exist of Krishnamacharya doing full parsvakonasana at 78 years old, and Pattabhi Jois continued to teach yoga until the age of 90.

So how do we explain this?

There are several fairly obvious physical factors in the yogic lifestyle that would influence health and aging, as well as more subtle factors.

Calorie restriction (CR) is widely accepted as the only method so far proven to extend longevity and reduce the physical manifestations of aging.

It has been demonstrated in a wide variety of species, from yeast to monkeys (though not yet in humans), that a calorie restricted diet (lowering the calorie intake by 20-30%, while providing essential nutrients), increases lifespan.

CR animals maintained youthful appearances and activity levels longer and showed delays in a range of age-related diseases. CR reduces age associated neuronal loss, prevents age-associated declines in learning, psychomotor and spatial memory tasks and improves the brain’s ability for self repair.

We can find several parallels between the effects of calorie restriction and the metabolic effects associated with yoga practice.
Psychological changes associated with aging

These includes:

  • Loss of muscle mass and tone, decreased muscle to fat ratio
  • Loss of bone density
  • Loss of flexibility, joint disorders such as arthritis
  • Deterioration of lung elasticity and capacity
  • Disorders of the circulatory system – decreased sensitivity of baroreceptors
  • Degenerative disorders of nervous system – e.g. tremor, Parkinson’s disease
  • Sensory and cognitive impairment
  • Psychiatric conditions – depression, anxiety, dementia
  • Reduced immune function
  • Reduced reserve capacity (slower recovery from exertion, injury or disease)
  • Sleep disorders
  • Impaired glucose tolerance and insulin sensitivity, strongly linked to abdominal obesity
  • Further complications can occur as side effects of medication, or medication may mask symptoms of new diseases

Why do we age?

There are many and varied theories of aging, among them the following:

The free radical theory of aging states that over time, cells accumulate oxidative damage caused by free radicals which are the normal by products of metabolism. Aging is characterised by a decline in ability to neutralise free radicals

The rate of living theory states that lifespan is inversely related to metabolic rate. It appears to apply to many species; however a notable exception is birds.

Another theory suggests that lack of protein turnover may cause aging.

Evolutionary theories of aging suggest that the previous generation age and die to make way for their offspring, maintaining genetic diversity within the population.

According to the programmed aging theory, aging is genetically programmed, and age related changes in cellular function result in increasing susceptibility to disease and eventually lead to death

Theories of aging based around programmed cell death (apoptosis) imply that as people age, more of their cells start to decide to die.

The cell division limit theory states that there is a specific limitation on the number of divisions that somatic cells might undergo.

The telomeric theory of aging postulates that as telomeres (regions of repetitive DNA at the ends of chromosomes) shorten each time a cell divides; this leads damage to essential DNA. This results in cellular damage due to the inability of the cell to duplicate itself correctly. Elevated levels of oxidative stress and inflammation further increase the telomere attrition rate. This theory ties in with the free radical theory and the cell division limit theory.

Other theories ascribe age related problems to the accumulation of random genetic errors over time, also decline in DNA repair capability of cells.

Many of these theories are interlinked, and all appear to have some validity, but a definitive answer has not yet been found.

General positive effects of a yogic lifestyle

There are many known benefits to the regular practice of yoga, which would help to minimise many of the problems associated with aging.

Regular exercise (asana) can help to maintain muscle strength and tone and bone density, joint flexibility, and improve posture, balance and maintain mobility. Combined with pranayama, regular practice can help to maintain circulatory and respiratory health.

Yoga has also been shown to be beneficial in the management of stress, anxiety and depression, aiding in the maintenance of mental health.

A vegetarian diet can also aid in extending life – it has been shown that vegetarians live longer, have less heart disease and lower rates of cancer

Metabolic factors associated with calorie restriction and longevity – Biomarkers of aging

Caloric restriction in laboratory animals has been shown to have significant impact on that metabolism.

The biological characteristics of animals on CR diets seem to apply to longevity in people. A continuing study in Baltimore by George Roth of the National Institute of Aging concluded that the same biological markers produced in CR animals are evident in the men who are living the longest.

These markers include:

  • Lower levels of blood glucose and insulin
  • Reduced body temperature
  • Less fat in the blood, more HDL (high-density lipoprotein – good cholesterol)
  • A steady level of DHEA (dehydroepiandrosterone – a steroid hormone)

Plasma melatonin levels may also represent a possible biomarker of aging in primates

Subscribe to our newsletter
The latest news, articles, and resources, sent to your inbox weekly.
By subscribing to our newsletter, you acknowledge and accept our privacy policy.
All collected data will be used exclusively for marketing purposes.
By clicking "Submit", you agree to the privacy policy
©2025 MyShantiSpace - All rights reserved.

Search here

Find the best match of your interest

More Filters

Show More